One-dimensional stochastic Levy-lorentz gas

نویسندگان

  • Barkai
  • Fleurov
  • Klafter
چکیده

We introduce a Levy-Lorentz gas in which a light particle is scattered by static point scatterers arranged on a line. We investigate the case where the intervals between scatterers xi(i) are independent random variables identically distributed according to the probability density function &mgr;(xi) approximately xi(-(1+gamma)). We show that under certain conditions the mean square displacement of the particle obeys >/=Ct3-gamma for 1<gamma<2. This behavior is compatible with a renewal Levy walk scheme. We discuss the importance of rare events in the proper characterization of the diffusion process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetic Transport in the Two-dimensional Periodic Lorentz Gas

Abstract. The periodic Lorentz gas describes an ensemble of non-interacting point particles in a periodic array of spherical scatterers. We have recently shown that, in the limit of small scatterer density (Boltzmann-Grad limit), the macroscopic dynamics converges to a stochastic process, whose kinetic transport equation is not the linear Boltzmann equation—in contrast to the Lorentz gas with a...

متن کامل

Typicality of recurrence for Lorentz gases

It is a safe conjecture that most (not necessarily periodic) two-dimensional Lorentz gases with finite horizon are recurrent. Here we formalize this conjecture by means of a stochastic ensemble of Lorentz gases, in which i.i.d. random scatterers are placed in each cell of a co-compact lattice in the plane. We prove that the typical Lorentz gas, in the sense of Baire, is recurrent, and give resu...

متن کامل

Numerical Solution of Multidimensional Exponential Levy Equation by Block Pulse Function

The multidimensional exponential Levy equations are used to describe many stochastic phenomena such as market fluctuations. Unfortunately in practice an exact solution does not exist for these equations. This motivates us to propose a numerical solution for n-dimensional exponential Levy equations by block pulse functions. We compute the jump integral of each block pulse function and present a ...

متن کامل

Outperformance Testing of a Dynamic Assets Portfolio Selection Supplemented with a Continuous Paths Levy Process

This study aims at getting a better performance for optimal stock portfolios by modeling stocks prices dynamics through a continuous paths Levy process. To this end, the share prices are simulated using a multi-dimensional geometric Brownian motion model. Then, we use the results to form the optimal portfolio by maximizing the Sharpe ratio and comparing the findings with the outputs of the conv...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2000